Please fill all required fields
    SENSOR INPUTS: Es = equation 6      DEW POINT            
    Temperature = C     Es = Pascals (Pa) = saturation pressure of water vapor td = 243.12*H/(17.62-H) °C      
    RH % = %             H = (log10(RH)-2.0)/0.4343+(17.62*T)/(243.12+T)      
    Pressure = Pascals (Pa) if equal to "0", altitude is used in calc             Tc = temperature, deg C   td = °C = Dew Point Temperature      
    h = meters altitude above Sea Level               c0 = 6.1078     H =      
                      c1 = 7.5            
    ρ =
    equation 4b
     
      = air density               c2 = 237.3     RH % =      
    ρ = kg/m3  Air Density         Temp =      
            Pv = Rh*Es   = actual water vapor pressure m = 17.62      
    D = density, kg/m3      Pv =     Tn = 243.12 °C          
                Pd = pressure of dry air (partial pressure), Pascals            
                Pv= pressure of water vapor (partial pressure), Pascals     Es =    
                P = Pd + Pv = total air pressure, Pascals ( multiply mb by 100 to get Pascals) RH % =    
                Rd = 287.05 gas constant for dry air, J/(kg*degK) = 287.05 = R/Md          
                Rv = 461.495 gas constant for water vapor, J/(kg*degK) = 461.495 = R/Mv P @ Alt & Temp = Pascals (Pa)  
                R = 8314.32 universal gas constant = 8314.32 (in 1976 Standard Atmosphere) P = Pascals (Pa) = absolute atmospheric pressure  
                Md = 28.964 molecular weight of dry air = 28.964 gm/mol   h = meters altitude above Sea Level  
                Mv = 18.016 molecular weight of water vapor = 18.016 gm/mol          
                T = temperature, deg K = deg C + 273.15     HUMIDITY Density Multiplier =    
         
    Standard Atmosphere  
    p0= 101325 Pa    
    T0= 288.15 K    
    ρ0= 1.225 kg/m³    
    To calculate the density of air as a function of altitude, one requires additional parameters. They are listed below, along with their values according to the International Standard Atmosphere, using the universal gas constant instead of the specific one:  
        Temperature at altitude h meters above sea level is given by the following formula (only valid inside the troposphere):  
    T = T_0 - L \cdot h \,
T standard = K  
    T Non-standard = K      
    p = p_0 \cdot \left(1 - \frac{L \cdot h}{T_0} \right)^\frac{g \cdot M}{R \cdot L}    The pressure at altitude h is given by.      
    g*M/R/L =          
    p = Pa          
    \rho = \frac{p \cdot M}{R \cdot T} \,
    Density can then be calculated according to a molar form of the original formula.      
    ρ = kg/m3      
    ρ_non_std_temp = kg/m3    
             
    Temp = C ambient temperature      
    h = meters Altitude above sea level      
     p0 = 101325 Pa sea level standard atmospheric pressure    
     T0 = 288.15 K sea level standard temperature      
    g = 9.80665 m/s2 Earth-surface gravitational acceleration     
     L = 0.0065 K/m temperature lapse rate      
    R = 8.31447 J/(mol·K) universal gas constant       
    M = 0.0289644 kg/mol molar mass of dry air       
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
       
    Powered By SpreadsheetConverter